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INTRODUCTION

The problem of 1load duration effects in timber and wood-based
products has attracted considerable attention during the last decade. In
particular, the research effort has concentrated on determining the
differences between the behaviour of material in struétural sizes and
that of small, clear specimens. Results reported by Madsen and
Barrett (1976) first showed that Douglas fir lumber in bending did not
follow the trend of the "Madison curveh, derived from small clears and
traditionally used to quantify duration of load effects for all
structural applications of wood. Tests were subsequently started at the
Western Forest Products Laboratory in Vancouver using Western hemlock
lumber in bending. The results have been reported by Foschi and Barrett
(1982), and they not only confirmed the experimental trend observed by
Madsen but the conclusions were reinforced by a substantially larger
sample size. In the U.S., tests were started at the Madison Laboratory by
Gerhards (1977,1986), using a sample of 2 x 4 lumber particularly
selected to provide low short-term strength material., As a result of this
activity, a joint Canada-U.S. project was begun between Forintek Canada
Corp. and the Madison laboratory. The planning included testing of spruce
lumber in Canada and Douglas fir in the U.S., in two sizes, two lumber
qualities, in bending, tension and fully-restrained compression. The
Canadian part of the project is well underway, with the bending testing
almost complete for 2 x 8's and continuing for 2 x 4's. Testing in
tension and compression is equally advanced. Preliminary results from the
bending tests were presented during a symposium on load duration

organized by Forintek Canada Corp.,(Foschi and Barrett, 1985).
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Experimental programs are also underway in Europe, particularly in
the U.K, Denmark and West Germany.

The interpretation of tﬁe experimental results has also received
substantial attention. The development of "duration of 1load models" is
required to link the conclusions from the tests, performed under constant
loads, to the more general design situation of loads varying over time.

Essentially two approaches have been used in the development of
load duration models: 1) accumulation of'damage and 2) fracture mechanics
or crack propagation. The work of Gerhards (1977,1986) and Foschi and
Barrett (1982,1985) uses the concept of damage accumulation, while
Nielsen's (1980,1982,1985) is based on crack propagation in a material
with viscoelastic properties.

In the first approach, "damage" is seen as a state variable
ranging from O at the beginning of load application to 1 at failure.
Several types of damage accumulation laws could be postulated, depending
on whether the accumulation rate is assumed to depend only on the stress
level or also on the previously accumulated damage. Election of a
particular form for the damage law must rely on how well it will match
the experimental results when the corresponding test load histories are
entered. Although "damage" cannot be measured directly, one can think of
it as being implicitly related to more "physical variables". For example,
an admissible definition of damage would be the ratio between the current
crack length and the crack length at failure, since it satisfies the
range conditions (0-1). Simple damage accumulation laws, depending only
on stress level, have long been used in the study of fatigue in metals:

Miner's rule of linear damage accumulation is a well known example.
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The fracture mechanics approach postulates a law for the speed at
which a crack will grow under stress. In linear, elastic fracture
mechanics the law commonly wused is an empirical relationship between
speed and level of the stress intensity factor, derived from tests.
Since the stress intensity factor depends on the crack length, this law
implies that the crack speed is controlled both by stress level and the
current length of the crack. Nielsen has proposed a similar model but,
instead of making the assumptions of linear, elastic materials, he
considers a material which behaves viscoelastically around the crack tip.
Thus, wupon load application, the material around the tip deforms
(without the crack propagating) until a critical deformation is achieved.
At this time, the crack advances and the process repeats itself until the
crack achieves a critical length at which very rapid failure follows.

One objective of this paper is to discuss briefly these three
models and their ability to represent data from an experiment on Western
hemlock lumber in bending (Foschi and Barrett, 1982). A second objective
is to discuss the problems which each of these models present when they

are used in the development of reliability-based design procedures.

THE U.S DAMAGE MODEL (GERHARDS)

In this model the rate of damage accumulation is written as

(1) da/dt = exp(-a + b T(t)/?é)

where a¢(t) is the damage, 7(t) the applied stress, a and b are constants
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and T, is the short-term strength measured in a ramp test. It is assumed
that while a and b are constants for the population, T, is lognormally
distributed.

This is an example of a law which only depends on stress level.
Let wus consider the integration of Eq.(1) for the ramp stress history
used in determining 75.'For T(t) = 7; (t/T;), and integrating between t=0

(= 0) and t= Ts (= 1), one gets ( for k = 7’; /'”fs )

(2) 1l = 7, exp(-a) [exp(b) - 1.0]1 / (b k)

This equation points to a first flaw in the formulation of the model. It
is apparent that if a and b are constants, since k is constant,7é must
also be constant, contrary to the its definition as a random variable.

Nevertheless, for the test load history of Fig.l, the time-to-failure Tf

is given by

(3) Te =T, + 7, Lexplb(l- 7/ 7)1 -1} / (bk)

where 75 is the applied constant stress and TO the time needed to apply
it.
Eq.(3) can be fitted to cumulative distribution data of

times—~to~failure. Given T the constants a and b can be found
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from the minimization of the function

N
(4) Y = Z (1.0~ T, /T, )
i=1

where Tfi and Tdi are, respectively, the predicted and the measured
time-to-failure at the same probability level.

Fig. 2 shows a fit of the model to cumulative probability
distributions for Western hemlock lumber in bending. It is apparent that
the model is too rigid to represent the data trend. If a better fit is
obtained for the shorter times, as in Fig. 3, the model is not able at
all to follow the data trend at longer times.

The model, whether from Fig. 2 or 3, would predict much longer
times~to~failure than observed from the data. This non-conservative
feature, coupled with flaws in its definition, do not make this model

suitable for either data representation or further reliability studies.
THE FRACTURE MECHANICS MODEL (NIELSEN)

L.. Nielsen's model of crack propagation in a material with
viscoelastic properties must be considered in two parts: 1) while the
crack tip is viscoelastically deforming without crack extension and 2)

after crack extension takes place.
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Nielsen shows the calculation of the time Ts required to start

crack propagation. This time depends on the load history, satisfying

(5) [1.0 + 2.0 (T/T)°/(b+1)(b+2)] = [ 0__/(k T_)]?
for a ramp load, and
(6) [1.0 + (T/7)"1 = (o / 7)°

for a constant, step-function stress T, The parameters b and 7

correspond to the creep function J(t),
7 J(t) = [1.0 + (t/7)P1/E

where 7 is then the deformation doubling time and E the initial modulus

of elasticity.
After the time TS, the model results in the following relationship

for the rate of crack growth:

o(t) 2 (b+1)/b
k(t )=
WZ Ocr ’ Ocr
(8) d k(t)/dt =
8 q 7\ o(t))2 ] /P
1.0 - K(t)|——
o

cr



where k(t) is the non-dimensional crack length ratio, 0y the
inherent strength of the material without flaws, and(fcr is the short-term
strength measured in a very fast ramp test (actually, under an infinite
rate of loading). The constant q in Eq.(8) is defined as

(9) q = [(b+1)(b+2)/2]%/P

and, if c(t) and Co are, respectively, the current and the original crack

length,

(10) k(e) = c(t) / ¢

Eq.(8) 1is identical with Eq.(31) shown by Nielsen (1985). It is
apparent that, given any stress history o(t), a solution for K(t) is
quite difficult to obtain without resorting to numerical integration.

What is  the condition at failure when the crack speed grows
without bounds? From the denominator of Eq.(8), the time-to-failure Tf
will be such that

2
U(Tf)

]
—

(11) K(Tf)

UC r

When the applied stress is constant (a step function 7;), the
variables t and K(t) can be separated and Eq.(8) can be integrated
between the lower limit Kk = 1 and the upper limit given by Eq.(11). The

resulting time-to-failure Tf is given by
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(o../7)
8 a7 0.\ / O\ T (g-pin
(12) Te = Tg + - 4§

This equation was used to fit the model to the same Western
hemlock data previously considered. The calibration parameters were the
exponent b, the doubling time 7 and the ratio r = ( OL/ Oér)‘ Each of
these were assumed to be independent, random variables. To satisfy
the condition that r and 7 be positive, they were assumed to be
lognormally distributed. The exponent b, on the other hand, was assumed
normally distributed. The model was calibrated by minimizing the same
function of Eq.(4), with the actual variables being the mean and standard
deviations of each of the three unknown distributions. The minimization
itself was carried out with a nonlinear optimization routine (Fletcher
and Powell, 1963).

The results of the minimization were as follows:

Variable Distribution Mean Std. Deviation
Doubling time, 7 Lognormal 1017.38 hours 536.11 hours
Creep exponent, b Normal 0.249 0.0415
Ratio, r* Lognormal 2.764 2.883

with the ratior = 9L/ Ocr = 1.0 + r*.
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Fig. 4 shows the corresponding fit of the test data. It is
apparent that this model is capable of representing the experimental
trends very well. It must be noted, however, that the expression for Tf
from Eq.(l2) corresponds to a step function loading, and not to the
actual loading used in the experiment as shown in Fig. 1. It was assumed
that the data for times-to-failure longer than 10 hours would not be
affected by the manner in which the load was applied, and therefore the
fit was performed including only times-to-failure longer than 10 hours.

In order to discuss the model further, let us define the quantity

(13) O = (0 ./ o(t)? / k(t)

. R 2
which initially ( at t = Ts ) takes the value Ez)—-(ahr/ 06) , where 0,
is the stress at t = Ts' At failure, from Eq.(11), © = 1. Thus, this
quantity behaves as a damage parameter. The rate of growth of @& can be

derived from Eq.(8),

o) wt o\ N 1
(14) dOB/dt +O |2 + -0
a(t) 8q7\9 / \o.,./ (©-1/P
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where g(t) stands for the derivative d ¢(t)/dt. For the general case in
which the stress varies with time, Eq.(14) is a first-order, nonlinear
equation for &(t) with coefficients which are also functions of time. It
is a very difficult problem to find closed-form solutions to this
equation, and the only recourse is to utilize numerical integration
procedures. This fact complicates and makes expensive the utilization of
this model for simulations in calculations for reliability-based design.

It is to be noted that numericalrintegration must be used even to
predict strength under a ramp load. The strength I r in the model is
really the strength under a very fast ramp (infinite rate of loading).
The strength under a standard ramp would be lower, and due to the
complications of its calculation along with the fitting procedure, the
calibration of the model was performed assuming that g, Wwas
approximately equal to the short-term strength measured in a ramp test
with an average duration of 1 minute.

Only when the stress is constant, 5(t) = 0, the variables t
and © in Eq.(14) can be separated and the equation integrated to yield
the known result for Tf.

Another interesting discussion point is the effect of strength
level, or the effect of o . in Eq.(12). For the same stress ratio 7é/aﬁr’
and constant values of inherent strength GL and creep parameters, a
stronger specimen (high atr) would result in shorter Tf. It is important
in this conclusion to emphasize the role of the variables kept constant:

the effect of increasing 0. alone could be completely reversed if the
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creep doubling time, for example, is sufficiently increased and creep
is correspondingly reduced. The correlation between 9., and the creep
parameters has not been studied experimentally, and could prove difficult
to do. Nevertheless, this should be the topic of further research.

It would also appear difficult to introduce creep parameters
obtained from a creep test where, for example, beam deflections were
monitored over time., What is needed are creep parameters for the
viscoelastic behaviour around the crack tip (perhaps in tension
perpendicular to the grain), and the variability in these values will
depend on very localized conditions of grain deviations and density. It
is the authors' opinion that the creep parameters 7 and b, although
"physical” in nature, cannot be easily measured and may only be
obtained by calibration of the model to load duration data. To illustrate
this fact, Western hemlock lumber was not observed to double its initial
deflection in just 42 days, although this doubling time appears suitable
for the model. A recent report by Hoyle et al. (1985) on bending creep of

Douglas fir beams estimates doubling times in the order of 105 hours.
THE CANADIAN DAMAGE MODEL (FOSCHI)

Foschi and Barrett (1982) presented a damage accumulation model

which expressed the rate of damage growth as

b

(15) do/dt = a [ 7(t)/ T~ 1" + A a(t)
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where a and N were independent random variables lognormally distributed,
b was a constant, T, was the short-term strength measured in a ramp test
of an average duration of 1 minute, and I, was a constant ("threshold
stress ratio”") which had to be exceeded in order to have damage
accumulation.

The model of Eq.(15) was fitted to the same Western hemlock data
by Foschi and Barrett (1982), and the model proved to be able to
represent the experimental trends very well, In particular, the constant
threshold stress ratio obtained was o = 0.50. This meant that in a ramp
test, for example, no damage is accumulated until the stress exceeds half
of the ultimate strength.

Although this model had the advantages of being successful
in representing the data, and of being relatively simple to use in
reliability studies (Foschi, 1984), it also offered some disadvantages.
In particular, during the integration of Eq.(15), the term A(t) leads
to an exponential  growth of damage. At the beginning, this term does
not control the growth process and damage increases slowly. After some
point, when damage has increased substantially , the term takes over and
damage increases rapidly to failure. Although this seems reasonable,
there is a case in which the model leads to unreasonable results. This is
when, in a random load sequence, a load has produced a substantial damage
(for example, o« = 0.3) but has not failed the member, and the subsequent
loads 1in the sequence are infinitesimally higher than the threshold.
Being higher than the threshold, they will produce additional damage
albeit an infinitesimally small one. Nevertheless,‘ the damage 0.3 will

grow exponentially to failure as a result of the term Ao(t). One is then
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faced with the wunreasonable prediction that a situation of almost no
loads will lead to failure over time if the member has been sufficiently
damaged .

In order to improve the model, the random variable A was taken to
be a function of the stress level as well. In this manner, when the loads
are very small, the exponential growth will also be very small. The

modified model expresses the rate of damage growth as follows:

(16) do/dt =a [ 7(t) - a T ]b +c [ 7(t) - o T, | Ta(t)

where now c and n are constants which could change from member to member
in a population.

Integrating Eq.(16) for the ramp load used to obtain the
short-term strength Ty it is found that a can be approximately

obtained as a function of the other model constants:

A7) as=kG+D/ [T (1-q) 10D

where k is the ramp loading rate. The damage o done during the loading
part of the stress history of Fig. 1 can also be approximately expressed
as

1 (b + 1)

(18) aoz[(Ta“ao 7"S)/( 7'S_-OVOTS)
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The time-to-failure Tf for the stress history of Fig. 1 is

obtained from the corresponding integration of Eq.(16):

1 1+ (a/e)( 7, - o rs>(b - n)

T 4+ In

c( 7, - 9, 7"’3)n oy + (ale)( T, - 9 Té)(

(19) T

where a is obtained from Eq.(17) and 05 from Eq.(18).

It is worthwhile comparing this model with the predictions from
the fracture mechanics approach. If the stress ratio ( Ta/ 75) is kept
constant, and for the same values of c, b, n andcz , the time Tf will be
shorter for a member with a higher short-term strength Ty This is in
agreement with Nielsen's model, but the same comment must be made that
this conclusion depends on the assumption of all other parameters
remaining constant. As in the fracture mechanics model, a higher Té could
be compensated by a lower value of c¢ to maintain a given value for Tf, In
this model, the parameter c plays the role of the creep doubling time in
Nielsen's approach.

The damage model contains four parameters (b, c, n, ab). Fach of
these were assumed to be positive, independent random variableé with
lognormal distributions. Their means and standard deviations were taken
as the unknowns in the minimization of FEq.(4) to fit the model to the
Western hemlock data. The minimization was carried out with the same
routine utilized for the Nielsen model. The mean and standard deviations

obtained for the four parameters were:
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Variable Distribution Mean Standard Deviation
b Lognormal 35.204 6.589
¢ Lognormal 0.1559 x 10°®  0.9621 x 1077
n Lognormal 1.429 0.139
a, Lognormal 0.578 - 0.163

Fig. 5 shows the fit of the model to the data. It is apparent that
this damage model is capable of following the experimental trends very
well. The fit is slightly better than for the fracture mechanics model,
but this is mostly due to this model having only three parameters while
the damage equation offers more flexibility with four.

The threshold stress ratio is no longer a constant but is
lognormally distributed across members. Its mean value is still around
0.5, as in the earlier version of this model. The independence of this
parameter, as well as that of ¢, in relation to 7; is not proven

and should be the target of future research.

COMMENTS ON MODEL CALIBRATION

The raw data from a duration of load experiment are
times-to-failure under a constant stress. These data can be ranked and
shown as cumulative distribution functions of the type wused here for
Western hemlock. It is impossible to determine simultaneously the

short-term strength of the pieces loaded and, therefore, it is impossible
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to determine accurately the stress ratio to which each piece has been
loaded. An approximate method (Madsen and Barrett, 1976) allows the
estimation of the stress ratios, and thus the representation of the data
on a stress ratio vs. time-to-failure plot.

Calibration of a duration of load model could be done using either
represéntation. Calibration to the raw data's cumulative distributions
has the advantage of avoiding the uncertainty in the approximate
estimation of stress ratios, and should be preferred. However, it also
presents some problems. The function of Eq.(4) 1is relatively flat around
the point corresponding to the minimum, and the fit may be quite good for
rather different sets of model parameters. This may create the problem
of deciding on a "good" set for the calibrated model.

A general computer program (DOLFIT) has been developed and runs in
an IBM XT or AT. It can fit either the damage accumulation model or the

fracture mechanics model. The procedure is as follows:

1) Given the mean and standard deviation of each parameter, and
the distribution of short-term strength 7, generate a random sample of
NREPL times-to-failure using the appropriate model;

2) Rank the sample of NREPL replicates and obtain the cumulative

distribution function,
3) Compute the residual function from Eq.(4).

4) The nonlinear minimization routine requires the gradient of
Eq.(4), that is, its partial derivatives with respect to each of the
variables. These derivatives are computed numerically, repeating steps 1,
2 and 3 for small changes in the individual variables but with the same

sequence of random numbers.
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5) The minimization routine automatically modifies the initial

guesses for the variables in a search for the minimum of Eq.(4).

It was found that the sample NREPL should be sufficiently large to
avoid fluctuations in the answer when the procedure is started with a
different random seed. NREPL = 1000 was used in the results presented
here. The derivatives were computed by changing each variable X in the
amount +0.001 X , and computing the change in Eq.(4) over the interval
0.002 X. The procedure was stopped when the change in the variable X was

less than X x 10—4.

CONCLUSIONS

Three duration of load models have been considered. Two of them,
the fracture mechanics approach of Nielsen and the damage accumulation
model by Foschi were found suitable to represent accurately the
experimental trends in Western hemlock lumber in bending. The model by
Gerhards was found to be lacking in the flexibility needed to follow the
experimental trends. The fracture mechanics model is not easy to use,
since it requires numerical integration to obtain the time-to-failure in
all cases when the applied stress varies with time. In this context,
applications of these models to reliability calculations will be easier
using damage accumulation. A general calibration program has been
written, but fitting must be done carefully and with a degree of

judgement.
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DURATION OF LOAD EFFECTS FOR SPRUCE TIMBER
WITH SPECIAL REFERENCE TO MOISTURE INFLUENCE

A STATUS REPORT

Preben Hoffmeyer
Building Materials Laboratory
Technical University of Denmark
Building 118, DK-2800 Lyngby, Denmark

1. INTRODUCTION

The present paper reports on a project which is still incomplete in terms

of testing and analysis.

The paper is an interim report and presents the limited results of analysis

carried out to date.

The research project is aimed in particular at an investigation of the pos-
sible influence of moisture content on the effect of duration of load on

spruce timber. Such an effect was earlier found for clear wood /1/.

The project is part of a joint programme between Princes Risborough Labo-
ratory (PRL) and The Technical University of Denmark (TUD). The Swe-
dish Institute for Wood Technology Research (Trateknik Centrum) has sup-
plied the test samples and carried out initial strength- and NDE-tests to

ensure matching of the British and Danish samples.

2. TEST PROCEDURE

The tests are being carried out at TUD in a constant controlled environ-
ment to give either 10-11% or 19-20% moisture content. Specimens used are

45x95 mm spruce ( Picea abies) subjected to 4-point bending.

An indication of the number of specimens in the full joint programme is

given in Table 1.



Moisture Constant Cyclic
Content MC = 1% MC = 19% 113 ==19%
Quality Q Q Q Q Q

1 2 1 2 1
Level
Short term 200 200 200* 200 -
SRy, 150 150 - - -
SR, 100 100 100* 100 -
SRy 100%(TUD) - 100% 100 100

l
Testing
Instituton PRL TuD
Table 1. Number of specimens in each sample. There are 2 qua-

and Q.) which are loaded to various

lities of timber (Q 2

percentiles (SR) ol‘ the corresponding short term strength.

Only specimens from samples marked * are included in
in the present report.

Each sample of specimens is composed of a number of sub-samples of 50
specimens. These sub-samples have been selected very carefully in or-
der to secure as far as possible identical strength distributions. For

further details see ref. /2/.

The results reported here are all related to the lowest (Ql) of the two
quality groups. Furthermore, only results from one half of the planned

tests are old enough to be included in this status report.

Stress ratios (SR) used are the 5th- and 15th-percentiles of the short
term strength (Table 2).

Moisture Stress ratio(SR) Stress
Content Percentile | Percentage
of mean short
term strength MPa
o o
1% SROS 75% 28.2
19% SROS 71% 26.5
19% SR]5 843 31.4

Table 2. Load levels for the Q1 specimens

<>



3. RESULTS

The number of specimens which broke on loading matched the number
to be anticipated from the percentiles used. This indicates that the

intended matching of strength distributions has been successful.

The true stress ratio of each specimen is estimated by assuming an
equal rank between the strength of short term and constant load

specimens.

Figures 1 and 2 show stress ratios against log time to failure for tim-
ber of a moisture content of 19-20% and 10-11% respectively. Results

from the PRL-programme /2/ have been superimposed Figure 2.

To avoid the uncertainty of the equal rank assumption, the mean log
time to failure of the four samples at the SR05 and SR15 levels are
plotted against stress ratio (Figure 3). The mean value marked "3"
has only been estimated from information in /2/. The other 3 mean
values are very accurate , as actually 50% or more of all specimens of

each sample have now failed.

Superimposed on Figure 3 are the results from tests on small clear
notched specimens at different moisture content levels /1/ as well as

the Madison curve.

4., CONCLUSIONS

Definite conclusions are not to be drawn on the basis of these prelimi-

nary results. However, some general trends may be seen :

- The curve for the higher stressed sample is above that for the lo-

wer stressed sample. For moist timber the effect seems to be there

even for a long period of time, whilst for dry timber the effect seems

to vanish after a short time. This suggests that low quality timber
may be more severely weakened by load duration than high quality
timber. This is opposite to the effect found by Madsen and Barrett
131



11/

121/

13/

- -

Although the difference may well be within experimental variability,
it is suggested that the difference is real, and based on the fact
that tension perpendicular to grain failure - which is the predomi-
nant failure mode for timber subjected to bending - is known to
cause shorter time to failure than tension and compression parallel
to grain. Gerhards and Link /4/ in a recent paper also found a
duration of load effect for timber in bending in excess of that pre-

dicted by the Madison curve,

If curves for higher stressed samples are above curves for lower
stressed samples , then the DOL-curves of Figure 3 will always be
steeper than DOL-curves as shown in Figures 1 and 2. Based

on Figure 3 it may be concluded, that the present investigation
shows a duration of load effect which already during the first few
months of loading is of the same order as that predicted by the

Madison curve.

The effect of moisture content on the duration of load for timber
has been shown to be no less than that found for clear wood (Fi-
gure 3). The curves are shifted towards longer times, but the
curves for timber runs parallel to the curves for clear wood, and
the log-time difference between dry and moist states is of the same

order of magnitude.
LITERATURE

Hoffmeyer,P., H.J.Krebs, L.Fuglsang Nielsen : "Duration of Load
Tests with notched spruce beams at two moisture levels". Procee-

dings of the IUFRO-Wood Engineering meeting, Xalapa, Mexica, 1984.

Fewell, A.R.: "Testing and analysis carried out as part of the Prin-
ces Risborough Laboratory's programme to examine the duration of
load effect on timber". Proceedings of the International Workshop
on Duration of Load in Lumber and Wood Products. Forintek Canada
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STRESS RATIO (SR) %

110
/Short term strength
100 = v

Madison curve

90

80 ~f

S
70 - -

60 =
50 o

LOG TIME TO FAILURE (hours)
40 . 1 T f T 1 T

-3 -2 -1 0 1 2

Figure 1. Stress ratio against log time to failure for spruce timber

subjected to bending. Moisture content 19-20%.




STRESS RATIO (SR} %

110
/—Short term strength
100 v
Results from PRL /2/
90 - ~SRys (TUD)
80 =

70 \\\

60 -

50 —

LOG TIME TO FAILURE (hours)

4o T T T T T T
-3 -2 -1 0 1 2 3 [}

Figure 2. Stress ratio against log time to failure for spruce timber

subjected to bending. Moisture content 10-11%.

STRESS RATIO (SR} %
110

100
MC = 19-20%
10-11%

Madison curve . L
90 Present investigation
\\
MC = 6-123% o~

—
MC > 308 —— N 7 LY
80-] MC = 153 —/\*//\
Hoffmeyer et al./1/ ~

£
(g}
1

Voo

70
Sample Stress Mean log Moisture
. time to
60 No. Ratio failure Content
% (hours) %
1 84 1.2 19-20
50~ 2 7 2.7 19-20
3% 85 1.6 10-11
LOG TIME TO FAILURE (hours)
L) 75 3.2 10-11
4o T T T ; T T
-3 -2 -1 0 1 2 3 L}

Figure 3. Mean log time to failure of the 4 SR05 and SR15 samples ver-
sus stress ratio. Included are results for small clear specimens

/1/. *This result is estimated on the basis of information from /2/.
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A MODEL OF DEFORMATION AND DAWAGE FROCESSES BASED ON THE REACTION
KINETICE OF BOND EXCHANGBE

i. Introduction

Long term creep tests during 10 to 23 years on joints, where the wood is
determining for the strength, indicate that deformation- and damage-
behaviour of wood is non-linear even at lew loading levels and can be
guplained by the theory of reaction kinetics of deformation. This is
confirmend by tests on clear wood, done as part of an E.E.C.-project.

The basic concept of this theory of deformation kinetics is to regard
plastic flow as a chemical reaction of molecular bond breaking and bond
reformation. For wood this approach is complicated by the complex
structure, and only an estimate of the invelved processes or molecular
parameters will be possible.

fs long as the molecular structure and interaction is not entirely
understood, every aproach will have a phenomenological character and it
iz at first necessary to state here a phencomenological medel in a
physical right form and to derive the possible simplifications to be

able to find the main determining processes and to explain the behaviour.
The predictions of the theory will be compaired with general experimental
tendencies of the behaviour of wood known from litterature.

?. Creep and damage model

In appendix A and B the mathematical derivation of this model is given,
solely based on the chemical reaction equations of plastic deformation
at the deformation sites and the transmission of stresses by the
surrounding elastic material. This leads to the following equaticns:

@ o - )

dé':t: Q_:L +’(A;TBief) g(nh(({"-(k(\-ﬁ’;({{_\) IR
de ki o
of a parallel system of Maxwell elements, where U, 1s the stress on
element i; €, is the strain of the non-linear dashpot and k| is the

spring coenstant. The terms with B; and L¢ give the small structural
changes. As discussed in appendix B - 3, 0. is very small and can be
neglected. Because Thas the form of S,= & - Mg , where M ie propor-

tional to the spring constants of the parallel elements and f »» <,
during most of the lifetime, it will hardly be possible to measure Ly
16
(o M az
ko ke k2
0 LI,I‘I 2

fig. 2.1 Farallel system of Maxwell units.

i

fa

In most ewperiments, one of the processes controls the overall behaviour
and only three elements (spring ko + k, § k,, and dashpet 2) have to be
regarded {dashpets 0 and 1 are then rigid; see fig.Z.1). During the
deformation the loading of the springs change f{transient flow) until all
Maxwell elements flow. Then the behaviour can be described by a single
Haxwell element.

In the following the solutions of this equation for the different loading
tvpes will be given.



Constant strain rate test

In fig. 3.1, & 3 - element model is given of one dominating process
controlling the overall rate. For the Maxwell unit at censtant strain
a L3 A

Fate £ = oyis go= ot év = gyor, when the structural change can be
neglected ( B and © in eg.2.1):

¢ - ¢ ‘ .

€=F,+% = 9 + A sinh (4%) (3.1
) Ky

The sclution of this eguation is: {5::%)

o= pr(Tep) fonh ( VrP*Agi, (2-c) .

ths R=C . C G A . = =B
with: .(5";\“ 7\‘ and \Hﬂy,ic}k‘c arc*anh(vﬂ_‘;ﬁ)
Im fig.(3.2) the stress - time relation of the medel is given. For wood k

and Yy are small and the line of fig. 3.2 is approximated bv a single
straight line. This leads to a mean modulus of elasticity M :

=T = ew o Tow = {6 4 m{p4Viep) = k, + & n(2

M= L e l fem ({5 lf[’)) ks +<§>&'W‘L”( B)
L (26 5 1\ g 1

wolor g ) =l feu (B) + L ()

3o the dependence of M on the strain rate é is:

soke = L (wd i)

5

i
o
b

wo= pe e e (e é-nic)) (3.
with A de, = kadem + W (2Po) (3.4

Eg.13.3) is egual to the esxperimental equation given in [23]

Because k,J¢,is dominating in eq.(3.4) is k,{g, approximately constant
arnd § is inversely proportional to k€,

The increase of 1/M6+gm with moisture content shows that the decrease of
M (kg ) dominates the increase of & with moisture content at Z0°C.

More probable is the existence of another Maxwell element.
BEC&USE‘Md@m¥Vh+= n, a value of n = 1% applies for green wood and n = 3§
at 10 % m.c. as also has be found for fracture.

It can be concluded that there is a small process in wood with a
dominating constant A in eg.(Z.1)

ay /

Gv_;/?;ﬁn(p. vp? )
i
1% (=ln2p)

7 0-0v =kt

v

fig. 3.1 Three element model fig., 3.2 Early flow of wood



£od

If all Maxwell elements of fig. 2.1 flow, a description by a single
{dominating) Maxell element is possible (neglecting the small, almost
constant, stress in ky in fig. 3.13. If B and T in eq.{Z.1) are
zera, then eq.{(3.2) applies, represented by fig. 3.3.

6]~ %6 (fofal displacement. )
0l o e machine.
€1 E2
. ” ki (fofal stiffness.)
2
L specimen
€y
€ 7
fig. 3.3 HMon-linear Maxwell element fig. 3.4 Flow of all elements

For & machine - specimen combination in a test, the crosshead displacement
is (fig. 3.4):

R
or the constant crosshead rate S= C

N N (R T o
gor &y = [ L K, d&)
0. ko _kg, = Kok AT(Gb's)smh (Tg(ice)
or ‘}S -l; (?; L Ca :
o Y 0
O ko AT( B (2T sinh (4T - * <)) (3.5
ds - © '
The analogues power equation for this case has the form:
& - o, .,(Cp_-f-cag,cho‘)(T*C?g")n (3. 4)
dt Wo

Roth equations (3.5) and (3.6} cannot he integrated to a functional form.
The results of numerical integration are shown in fig. 3.5 and 3.4.

0 G
Algw fo (=initial density of flow units. )
1 \—stiff machine. n=3 ( low activation volume )
2 /Kwh o or high festing speed
/“&\
“Shigh o T e —
without hardening. ( ¢=0)
_ —
high temperature; yield drop
vanishes. ( also at very —A=N
low temperafures. ) o
5 iy
£ t
fig. 3.3 Yield drop eg.{(3.3] fig. .46 Influence of n  eq.(3.5]

K<Y exp(- EL;_) J“%T



For wood in tensien // there is a high yield drop, indicating that B in
eg. (3.%) is dominating by a low initial "dislocation® denaity@ajhis is
not caused by a low value of n. Qna:ﬁh¢)

Clear wood in compression // chows a behaviour like in fig. 3.3,
indicating no hardening and ne yield drop. So ® and ¢ in eq. J.S) may be
neglected. For timber fwith knots) in compression along the grain however
there is a small yield drop, superposed on the behaviour of the clear
wood between the knots, indicating the acting of another (tensional)
maxwell element {crack propagation in grain direction at the knots).
kEnots act like "dislocations" with a low density.

4. Constant loading rate test

-

For the 3 - element model of fig. 3.1 is for this case / &-:;eoaﬂant
with B = C‘—gthe integration of the differential eg.{Z2.1), neglecting the
structural changes, gives: Kﬁke e¢(%d

1ol < ep) Yeanh (€2t (4,1
4“1 % GO -B) tamh (Cat) '

. v : Kok, \{ z

Nlth“ & wﬁykkl 3 l(‘”‘l+ﬁ2 5 G= ‘Eaf?és P

Under constant loading rate the machine and specimen stiffness have no
effect on the vield behaviour.

If all elements flow {fig. 3.4) the rate eguation is:

gsﬂ:

3

E = KT (gotble,) sinh 74TE) ¢ AT sinh (4at) (4.7)

or integrated: (B'se)

. VAT (cogh V:‘f’b.)*') 3
eo= (cosh( (4.3)

For higher values 0%<§¢t thig is:
KT (4 fdt) -
ev = g [ Lexr(Tg) -1) (4.4)

or with T=¢l:

m (2 + LIGE) (4.5)
(o A'T
The strength is reached for ¢ <€, . So § and @, at the rates @ andq; are
related by:

T T VR RaiT1oy | R N P R N ‘
AR (n-d-zc%‘:& & TEM (4.6)
ar e ,{(’,* ‘é{?g:.>
kl
o ( [M(H-Ui R 1 ~$¢ W (4.7)
w}, \W‘“‘ T 4‘6"% z
giving the form:
Y e -, mt (4,8
AL
This is the same relation as the ewperimental equation given in [241,
[agl etc. where Cp = 1.2 to 1.3 and‘/clz n = 27 for compression and 31

for bending. If n is aproximately linear dependent on m.c. as suggested
in [231, then these values indicate a m.c. of 13 %
The same result is obtained by integration of eqg.(4.9), where only the



hardening term is neglected. (Ef%q):
e = AT(5e t8es) Sk (46t) (4.9)

Only the ultimate strain ¢yu will have another value.
The alternative power representation becomes {g-= constant):

ey = A"T(_gc~+5ep)(g)”t" (4.11)

This is easy to integrate and the results are given in fig. (4.1},

g |

YA e B4 . Pt W §
(O l103q> 116% \10’epjsec.
fig. 4.1 Influence of the rate of leading
ar time to loading to the same strain [1]

1t can be seen from this figure, that for small values of n in » 1),
there is a strong influence of the loading rate on the level of the flow
stress. For high values of n (e.g. n = 30 as for woed), there is only a
small influence and there is a linear relation between the strength and
logitime to failurel.
For small values of n  the derivation of appendix B«&'is not general
gnough. From:

£ L (T)

‘Ca T
In(e,) - Ini@ + n.ln(T)

i

is: Inig )

So: dlni =n
dm@« ~
Appliing this operation j%}' ¢ = Asinh(4dT) gives:
K _
= (4.14)
n Fanh (T¢)

S50 for small values of Y& is n ~ 1, and for large values is n w,ﬁ#
So: n = T¢

For wood there is an indication that there is an element with a small
value of n. This is only noticeble at very high lcading speeds (fig.4.1}

G Creep and creep recovery
For the 3 - element model (fig.3.1), neglecting 5tructur'1 changes, the
force on the Maxwell element is detnrmlned bv eq. (3.1, L.

For the parallel spring ky is: S S Q- Lo(a.Tr

o Pit— “ { .;g_ 1 LE - |3 2, > trbt r) k}-.( )
Eecause for creep q = 0, is: b @»/

and eq. (3.1} becomes: B

T+ A“v’mh(c!,m) = “Tﬂl

Wi Ka



Fyov &EL A fsiv\‘/\(cﬁ‘fv) =0 (5.1)
2

With the boundary conditien €. 1~15 c Ty s T~ ke€ = k&(fww“ﬂ
and the solution of eg.(5.1) is:

;}Lm bn (Fanh (e (ewe))) = - ;‘%{LM + (ELKZ Ln (tanh ‘\4%1 (€x-20)))

or, because orctanh (%) *”’L“ K this can be written as:
L (-t . ki k C

€€ o i Ln (coth(-§n (%an\«(k.ii‘ﬂféwms)) b - fAL)) (5.2)
In the sarly part of the test this reduces to the logarithmic ferm:

‘{’mwz%~$V£Ln(~§tn(‘mhh(‘§%“))+ é— ks k‘: ¢ At) (5.3
o

£ an . - J_ L 1 {" ! A ;e

¢ = £, % 4%’1 l’\( (kd"(z)l'" (coih(’é%‘w) ) {(5.4)

A fit of this eguaticen is neot found in literature. Our tests show however
that the form of eq.(5.4) is right, alsc for small times. The fit is
mostly done for larger times (neglecting 1 in the last term) giving:

€=Cis Goint t ) (5.5)
C ‘ L -2 g o~ 2¥
I 40,.is large enough, is: In{cothix) = Z.arctanh{e % < 2e”
and eg.{(5.4) is:
, ke d A £ oxp(§Tv)
¢ ~¢, + jKLLV‘(’ + 2( W+ ler) ) {5.6)

The shift aleng the time axis according to ea.(5.4) is however to small
for wood and indicates a small value of 46}“

For very long times and high values of , €0.(3.2) can be written:

, . by AL

tw‘ﬁ: w;\—_ CO"LI k‘kl4At) =2 k 2

dlkr ( ( s dice P( Mkh )
or:
kydb At
¢ 2o+ 2 (- exp(- kladAt) c
¢ *‘C}'k‘z( P( i > (5. 71

S0 the behaviour becomes quasi Newtonian after long times.
Egq.{%.1) can be expected to be quasi Newtonian for low stresses, because
sinh{x} = % then. This equation then becomes:

T + e AdT L.

kirkz
. ) . - - ; dad AL
with the solution: ¢ —¢. = (3mw€o)(\_.exp( l:%kz )

It is seen that test results, in not to long time ranges, can be fitted
by Mewtonian equations as often is done. This, however will give an
underestimation of the relaxation times.



When Boe/dominates AC in eg.{2.1), and E\(can he neglected, then eqg.{%,1)
gf the 3- element model of fig., 3.1 becomes:

°

€ = “_;.v + Be, <l (4w ‘ (5.8)
. e -G oo b Tk (e
Because: ¢€ ¢,£2 —;3‘ %, & ( J
or: &y = Vl'g(lf -E‘
. évv -l ¢ ‘é =B e sinh 4T %@LV wpb}m} = ._Lé cuqv@e(( k)
2 ! _ _
giving: (ke = § + b (Hd §=5) exp (dir-kas)
0 @ Sr_l,., i
For creep is U= constant or T= 0, so: & = ﬁ@“hﬂ“‘t’@““‘”‘ﬂ)
or: dﬁ&‘_‘}_&,~, pr(‘i'sz - 3\—-&”& ;Z) % Q"P(qu {g\:ﬂ'))
4"‘2(.(" \c\

having the form:

f dz expl) - J"ze‘;amz) - ﬂguw; - EE)-El=)

or - dok
\C«.&“k"(s lu-k » L(d{b' % ‘k+k;)) = §t e (k'?ki)
503 4{.,‘(’_ (¢ - k&k; — E (%u (é.'?ﬁ‘z) ’t+ | (‘Hz(?o +y,)) (5.9)
- bt oyp (AT i e e
~¥ = k—‘:&; * [ 3: ex r('lf-futj *—F L Iy Ko 3) (5,101

This is shown in fig. S.1

Vs
e ) e Fuye d ol B )
e

_//

T

fig. 5.1 «creep by structural change

%
Because Cil%) = ?{Z for larger values of y and  Ei(e) = 05711 +ln(®m) ~ In(x)

for small values, is eqg.(5.%) approximately:

exp (qkal® =T )y ~ Bt rLl; ba (diex (€. -
or: 41 (& ‘T‘/gkkrk:;) e ((25) + L& G} =

being a straight line om log - aca =

It will be shown that wood has a mechanism as described above.

Because this is related to the cellulose, test resulte of dry summerwood
fibers of pine holocellulose pulp will be discussed [271.

In fig. 5.2, the average creep compliance of 50 fiber bundles is given
for different initial stresses. As follows from the very different values
of the initial compliances and from the not decelerating curves, flow of
all Maxwell element have been occurred, without hardening (see also fig.
§5.1). The kinked lines indicate two processes and a description is

LRl Zi) sl Ha(e-T,) + (Bee (40) +in(Yi

(5¢1)

)



possible with two Maxwell elements. Hecause one process will be much
slower than the other, a 3- element model approach f(one Mawwell element
and one spring! is possible and the analysis is the same if the small
plastic strain of element 2 {(spring element) is subtracted from the total
strain ¢.. 5o €= €-€y2 . &y =€y -z

the line with the small slope is the quicr process and as before,
structural changes can be neglected {eq.5.1). The line with the steep
slope, shows a strong delay time {see fig. 5.1) and will follow eqg.i5.8).
fs seen in fig. 5.5, the lines can moved horizontally aleng the logilt)
axis, to form one curve (giving the behaviour after long times at the
lowest given stress).
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195 lo'®
fig. 9.2 Cresp compliance fig. 5.3 HMaster creep curve
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The line with the small slope is accordingly to eg. (5 4) and the line

with the steep slope follows eg. (5.11)., BHecause in thdt equatzanlh(4k(t

ig almost of lower order in comparisen with 4& 1€~ Kka

an average value of Lnl#kdﬁ—..na) can be taken leading te a corrected Hamd
value of B (= B"), (seg the aquation in fig. 3.11.

It appears that in eq. (5.4 and (5.11), U4klis approwimately proportional
to . So ¢ = constant, indicating that the number of relaxing
mechanisms per unit area increases with increasing initial stress. An
other explanation could be that the average energy of the oscillators,
being: kT is ejgual to csVY, or ¢= V/kT = o/q . Except in cellulesic
materials, this property is also found in other materials, like metals and
rubbers,

The compliance of eqg. (3.4} is:

¢ e . o1 4 kikedAE R,
=8, U Sy s | e

where 1/W4kL o will be constant.

A shitt of the lines along the time axis means that%& at tq,, has to be
egual to E2 at ty, , where the strains are the total cfrains: c € +€va
If this ig done it appears that the shifts

Q‘a O G g 'L ._..Gea)
a( b &*';5 ak\—k,,)(ﬂ %\—’Z

is mainly dependent on the difference of the relative initial plastic
strains. These strains arise during the leading to the creep level (this
is the part of the strain that is measured).

Because a very faint curved Y~& diagram can be approximated by =a

Indta) = Inity) &



parabola, the plastic strains will increase guadratic with the stress
and the shift of the compliance along the time axis will roughly be
proportional to the applied stress levell (7

The compliance of eqg.(5.11) is:

€ x Lo+ d B op (4Tk) . (6 -th -
5 k‘f“(z C?V\Cg. LV‘(‘Q Q,;(p( 'K.!'VJ) ( ) {(5.13%)
This squation shows hardly any shift and because it is experimentally
found that the shift has to be equal to the shift of element 1, the
strains have to be added and both dashpots have to be in the same Maxwell
element 1.

The right form of the expression of t° in eq.(5.11) in fig. 5.1, also for
wood, follows from eq.(5.9). For small values of x is Eilx) - Eilxg)
In(x) - Inlx,? and eg.(5.9) then becomes:

Ln(‘sl\(z(ﬁ-?g;&l) \M(A(\(;U K\*k§+ 8, pr(é%@
Rt SUCRIS =

% kz e ‘rkl
It is seen that the strain grows exponential with time in the beginning
of the creep. This behaviour is measured for wood in e.q.[28].

In the analysis above, it is assumed that the temperature is constant.

To know the shift of the compliance along the time axis due to temperature
differences, the same stress level has to be used in all tests at
different temperatures. Then:

Intt,) - Init,) = In(B, ) - In(By, ) = E'/kT, - E'/kT,

where E'is the activation energy. This is only true if '/n—&k;
is independent on the temperature. Hecause this is unlikely, vertical
shifts are also necessary to obtain the right activation energy.

1§ all Maxwell elements flow, one is determining for the overall rate
and the power equation becomes:

A(fotbe) (T}ﬁ;?i)m (5.14)

This equation cannot be integrated. Numerical solutions show that the
delay time is due to "dislocation multiplication® similar to vield drop,

=

dependent on the initial flow unit density (see fig. 3.4).

il/no hardening.
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fig. 3.4 creep dependent on modelparameters.
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For creep recovery, the initial conditions are qu}Ergawhen t = 0 leading
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for the 3- slement model to
¢ et Un(eoth [ ~blafanb (459) 4 b Mia_ g 4c) (5.15)
ﬁfkﬂ - Vq*kl
analegous to eg.{3.2).
b. Btress relavation.
The 3- element model (fig. 3.1) loaded to ., & at to gets the stress To-lvg

on spring 2. This remains unchanged when by relaxation stress Wy, on spring
1 decreases: Y

. 2 o
For the Maxwell element is €=o0 m‘-ﬂ’wk“évor:

\t\;v < Asinhld )

Integration gives: Lin (Fank *ng': - A%’k‘t’*C
oF:
T, = i”.;- arch\h( ‘)‘a_n"\(;‘\:iiﬂs 'Q')‘P('A‘*/kit)) (6.1}

Jve .
This equation can be written with: C\={"ka¥i§) p) b= A‘“" :

b - nls by
T, b dreseit) o1, e L) o h,+m:) ).
A Q.r;‘)@bt) 4 \z e(bit“ Inia) B ﬂe(‘“b‘g thnie)

L ( tanh (b_.;_ %—llncn))

I
T4

To= -4 bn (anh (AdBE — Ll (banh(Tuzt))) (6.2)
For the early part of the relaxation this is:
Ty = “qﬁLn( 6%‘6‘7 =~ iiL”‘(JW”L’ LT‘%LU))

[#% )
L L A L Lfe o 2 arsceth(Ted)

(6.3)

Except for very small times this will have the empirical form:

Ty = < - Cy \o%t
The total stress on the specimen is: ¥ = To-Tro+Ty(t) or:

. Adlt

T= To ~ #Lﬂ (H" ya.rccoth(w!’(&(“‘vv)))
or:

, Adlet

. oL . : .
DA BN ni{ i < - S (@Gve {6.4)
T &r% ( q.wcw‘rh(w‘»(av v))\

in agreement with our experiments,

The shift of the relaxation lines along the time axis depend on the value
of:  arceoth{exp (dai)
If this is not sensitif fwzq(l;,q), as for creep, eq.{6.4) will show no

12
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_11..

shift, as e.g. found in [2gl, for microspecimens. For larger values of 4@@6
9 p

the shift will be: i

Ln(ta)- La(t) = -2
For macrospecimens, shifts has been found [301,03V] showing greater values
of éﬁ}othan for microspecimens by the high loading of the weak lavers.
The shift of the lines in [291, due to higher loading speed to the creep
level show the existence of an element with a small value of n (see fig.
4.1), that is only noticeble at higher speeds and will guickly unload at
relaxation. By this element the other elements will be lower loaded.

-

7. Conclusion

1t iz shown that the derived model is able to explain éxp&rimental
phenemena, although a simplified analysis and simplified properties of
the parameters where used to be able to obtain sclutions in a functional
form.
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AFFEMDIX A

THEQRY OF REACTION RATES FOR PLASTIC DEFORMATION IN BOLIDS

1. Introduction

In this appendix, a discussion of some aspects of the theory of
deformation kinetics is given that will be used for the derivation of a
simple creep and damage model, given in appendix E.

The basic concept of this theory is to regard plastic flow as a special
form of a chemical reactien {(like isomerization, where the composition
remains constant but the bond structure of the melecules changes),

because flow is a matter of molecular bond breaking and bond reformation.

A simple form of the reaction rate aguation is:

(H’-?_= - C-JJB = \’l (F ""Y?_Cb
dt &
where ? is the concentration of flow units.
C= v¥exp(-E/kT) {where v= a frequency factor)
E= the activation energy
k= Boltzmann's constant
T= the absolute temperature
Because there is a forward reactien into the product state and a
reaction intoe the reactant state, there are twe rate constants:

Ce=v Expé—EF/kT}

Cy=v ezp(—Eb/kT} (-

The atoms occupy equilibrium pesitions and are vibrating about the
minimum of the free energy potential, Every position of the atoms with
respect to each others determines a point of the potential energy
surface. The atoms must reach an activated state on this potential
surface in going from the reactant te the product state. (The thermal
energy is not equally devided among the atoms and it is a matter of
chance if an atem gets high enough energy to be activated and to be

able to break bonds.}
Pot.Energy _ﬁ .
de——- ——wa
T |
e \ By
W P2
/ \ [
\ W
7 N 1%
.
elF1
e o
l A A
-}fAA W *‘2fA)\-{“nI
We= 1 b 2

fig. 1 Fotential energy change for an elementary reaction.

(1)

backward
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e explanation of the form of the rate constants L f{eg.2-eg.
iven by Bolzmann sfatistics.

= {kT/hdewp{-E/LT) -3
= kT/h can be approximated te the Debye frequency {about 10 7 that
may be regarded as the number of attempts per second of a particle to
cross the barrier of height E. However, any attempt can succeed only if
the energy of the particle exceeds E, and the proebability of a jump per
second is: P o= ov,eup{-E/kT), where kT is the mean vibrational energy
af the particles.
Mostly not one group of reacting atoms is considered but a melal
gquantity. The molal free energy is then Em= Ny.E and the Boltzmann
constant is replaced by the gas constant K= N_ .k where N, is Avogadro’s
Mumber. So: E /kT = N, E/N, kT = Eu/RT

R g T R

i

K 8.616#10" evdeg™

h o= 4.135#10 P eysec
k/h= 2.084%10' % ced'deg™
R = 1.987 cal.deg 'mol™!
New = 6.02%10%

]
i Joule= iNm= 0.418%100 av= 0.239 cal,

2. Intfluence of an applied force

When the atoms are displaced from their eguilibrium positions by an
applied stress, the potential energy is increased. This means that the
potential energy surface is changed, making the reaction more probable,
decreasing the barrier height with Wg in forward direction and increasing
the barrier height with Wy in backward direction, where W= NF tW, is the
work of the external constraints. So:

W
Ce = K%T’ 2xp (mjf%:j) (4
cp= kT exp(TRzr) o

%, HReaction order of deformation processes

The theery is given for first order rections because nearly all materials
appear to follow that law. 50 the slowest determining bond breaking
reactions are of first order or guasi first order.

A description by higher order reactions is also possible and is p.e. given
in {31 where a Taylor series expansion of the rate eg. is given for
hydrogen bonded materials, leading te terms with increasing reaction
order. The first term of the expansion may be of first order to explain
the shown first order processes (relawxation, first moisture regain etc.)
in dry cellulosic material. The disadventage of this appreach is that the
rate eq. then reduces to a single forward reaction what is insufficient to
describe the total behaviour of relaxation and a better approach is then
possible by the first order theory (with a backward process) as done by
Meredith [31. An explanation why a first order theory can be used is given
in chapterB? where it is shown that the Eyring theory can be regarded as
an expansion of the processes intoe first order processes. The same appears
te be possible even for the complex reactions of decompoesition of wood at
high temperatures that can be given by pseudo-first-order reactions
de/dt:»QEk;(w—wd); W = weight loss) [41. Because the overall reaction has
an order close to one,{at the highest rate) as follows frem thermecgravic
experiments [51, the determining (slowest) bond breaking processes must be
of first order (or guasi first order).

3



This can be shown by the following higher order reaction:

~f{s“:;Cs 3‘“ (&)

In the Eyring model for creep, the density of the flow units ¢ 1is taken
to be constant, as given by the last term of eqguation (7). This cannot
be exacly true because then nothing changes and there would be no

reaction. In eg.{(7);: LQ==Y¢rA§§
) K ,,H
_ dferag) o dap &u— éi) Cq (4 fLé ~ o, (7)
de at °'

squation (&) is given, splitted in an initial value and a small change.
It appears that the last twe terms of eg.i7) are sufficient for the
description of flow and fracture: The last term, for steady state
processes, and the fere last term for severe changes in behaviour like
dislocation -multiplication and -breakaway, causing yield drop in a
constant strain rate test. So it appears that the theory describes small
etructural changes, and is linear in the variable Afbeing a quasi first
order process. To use a higher order eguation, the flow unit density has
te be known. It cannot be found by indirect methods (by measuring creep
ptc.} As a first simplification, it is possible to regard only first order
reactions.

4. Thermodvnamics

The thermodynamic system is chosen to be a small velume around the
dislocations {i.e. around the deformation- or fracture- site). This is
surrounded by elastic material centaining the external and internal
stresses and the fsnpp ature dependence of the elastic constants have to
be regarded separately in the model.

The variation of the Gibbe free energy at the deformation- or fracture-
site, for isothermal, reversible processes {with constant: temperature T,
pressure  f and humidity w) is:

dE = diH - T§ - fcd -p&) = dH - Td§ - 54T - cfd) -ehdl - Ldw - wdm
with cfh= £ AN = Py / ’
From the first law is:

dH = Td5 + cfdh +@dr So:

dE = -5dT - c A df - ﬁdwz%%gm +06 df + 06 deo

Because: oF B
b.l.gﬁ = - b-—-ﬁ—) = - C b,.{\
3T ¥ MS T
and because the termal expansion Eﬁ.uo&%ficient is approximate constant,

between some transition temperatures,with respect to T and t, 1is E linear
dependent on T and § . So:

49 L e I o4 «.
g?- 3"‘ai*“1“ {8

It is also to be expected from fracture and creep tests  that E may hbe
a;sumed to be linear dependent on f, and may be assumed te¢ be linear in T
like for cotton and other high polymers,
In the same way, from the other partial derivatives is:

c \)‘ - h,\,L el

S T %e i5)

and:

¥ =AM s

Jig 3T



Becauss of the lingar edpansion of wood with moisture content, 5:=: const.
and eg. (9} is:
Wz e d = agia,T (11)
% B
and E is linear in w too, as can be expected from the following. The
properties of wood follow the expicw ) - law, so the free energy may be
assumed to be linear dependent on w , as also follows from the descrip-
tion of sorption processes
Eg.ii0) is:
Y =l
e 205 = A, a,} {12}
[N B ’

From eq. (11} and eg.{12) u must have the form: iaz": dy = dg i
pwz aTE v 4T agl 4 agw + ag (13)

Im the same way is:

- :f»’t,c-fr a»le“T'ang 4 a(jT + ag. (14)
ch = AT+ 4 wl + Ay b A Cbay (157
with all a’'s, constant.
The general form of E will be:
E= d\CTT‘ ﬁzWS;T -+ ctaTc\) ¥ 49\;,;?1& R E a,cT«- a,l.f tagw v Ay (163

Frem tests of EI@],AiE constant for fracture processes, independent on T
for =0 isee append. B). Go E will be written: (@ =¢)

£ - H'- 5T -6\ (17)
Wwiths:
Ho = H! - cw
Moo= AL el wh
5 =5 + 5w

For very guick leoading, fracture is in the lignin and follows the WLF-
gquation around the transition temperaturel2Z]. 5o q, is only zero below
the transition temperature in that case and is constant above this
temperature.

e Farameters of the {flow units

The reaction equation can be given in the dimensions of the flow units.
I a segmentA.ia moving upwards, the hole Ain fig.2 is moving downwards.
The activation volume V is N\ times A, and the work on one unit is:

v = §'A.A , where f'is the stress on the unit and A is the area. This
can he expressed in the stress § in the material by: f.A.A = ENN
where N is the number of elements per unit area.

o the force per element times A, is the force per unit area divided by
the number of elements per unit area = stress / M.

Mis the length of the flow unit or the distance between points of #low.
So the concentration of flow units ¢ , being the number of activated
volumes per unit volume, can bhe written:

¢ = N A /Xiﬂ and for a symmetrical potential energy barrier (E; = Eb Yy
eq. (1) now gete the form of eg.{3.1) of appendix B. ‘
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AFFEMDIX B

DERIVATION OF A CREEF AND DAWAGE WODEL BASED OW THE THEORY OF )
DEFORMATION KIWETICS

1. Introduction

Because the general background of the theory is not common knowledge in
engineering, a short review (following [1]) is given in Appendix A.

The basic concept of this theory is to regard plastic flow as a special
form of a chemical reaction, because flow i1s a matter of bond breaking
and bond reformation.

A simple form of the reaction rate equation (for activation over a single

potential energy barrier) is:

dp2
Rate = 30~ = P10 = P2l 1-1)
where C and C are the rate constants for forward resp. backward re-

1,f 1,b
actions and p is the concentration of flow units, that may be kinks and

holes in polymers or vacancles and dislocation segments in crystalline

regions.

For larger, noticible, plastic deformations, it is possible that the re-
| action occurs over a system of energy barriers and systems of consecu-

tive and parallel barriers have to be regarded. There are indications

that this has to be expected for the complex structure of wood.

For a two barrier system (Fig. 1) there is an intermediate stage of Py

units being in steady state concentration. So:

E' C2b C
A “‘f;_’ 2F
2 E.
Cip 3 2b
e EI
2f
]
E21
E'"lf Eilb (32 E'A‘\
P
N » A

Fig. 1. Two consecutlive barriers.



The net numbers of units crossing the two barrier system is:

+
P1Ce * Pl

Rate = p,.C - p,C = C - p,C =
272fF 372b 2f sz + Clb 372b
TP (Cy4/C1¢:C5,/, ) (1.2)
L/C e * Cp/CleCos
For the ith obstacle is:
kT i
= o— o m—— l'
C, = x, = exp ( kT) (1.3)
or
ib e " Eip 4
-(-:--«-———-—: exp ( k_T ) . (l' )
i+l,f
and
- +
Clb _ 1 h exp (EZ,f El,b El,f) _1h exp (EZ,l)_ 1
B - kT C
szclf K kT kT k kT 2.1
(1.5)
Similarly is:
! - - +
CleZb _ Elf Elb E2b E2f _ EA 1 1.6
e e | = ) = exp (439 1.6)
1f 2f
Thus the rate becomes:
E' - W
b, = p, exp (—2L——AL)
1 3 kT
Rate = (1.7)
1/(:1’1 + 1/(12’1
with:
E! - W
1,1 1,1
o= — _‘—.—’-—.—.—_“‘-——L—- ©
Cl,l K T exp ( KT ) (1 82



2,1 h

and
E = (E' =W)._ - (E' +W). - (E' +W)  + (B' - W
IR e " ¢ Dy~ ¢ Dop + Y
= | - | — 1 + | - + e B
(Ble = By 7 Bpp ¥ Bpg) = (M + W+ Wy + W0
- _ . - [ - [ [
By =By "B v Ey = (BN W) - (B W)+ (E
- T o owe [ + = ! -
Big " Elp tEpp T Mpp #Wpp W) =By - W,
c,  =c

1,1 1,f

In the same way is for n obstacles in seri

b, - p . exp (E _/kT)

Rate = o1 n+1n ALl
Pl
i=1 %1

with:
E

N R
Ci1 =%y & (- =)

For m processes parapllel is:

moop, TP, eXp (El’A/kT)
Rate = z
m,n =1 n
[ e, D

i=1 ’

es:

(1.9)

i

[l
=1
> -
i
=

(1.11)

(1.12)

(1.13)

(1.14)



Series approximation of the rate equatlons

The general equations can be simplified to suitable forms for solutions
of the rate equations. Because these approximations probably cannot be
found iIn literature, the whole derivation is given here.

It 1s possible to expand the total potential energy curve into (Fourier-)
series and regard the proces as a parallel acting system of symmetrical

consecutive barriers.

"
+
+
H

1—th term 2-nd term i-th term

Fig. 2.1. Series approximation of E.

Except of the first term, 1s 1n all series EA 1" 0 (see Fig. 1) and be-
?
cause of the symmetry of the barriers in the series, all Ei ; 's and all
9
W, . 's are equal.
1,3
kT E' - W
. . : =K T el — 2.1
By eq. (1.8) is Cl,l K 3 exp ( T ) (2.1)
kT E' - 3W
. . : =K — - 2.
By eq. (1.9) is CZ,l K 5 eXp ( KT ) (2.2)
kT

E' - (21"1)W)

Eq. (1.13) becomes: C =K 3T exp (- KT

11 (2.3)



So:
1 1 1 1 1
) = ( + + 0.+ )
c KT E' W Si-u)
b e () e () e (B o (S
= 1 1 1 1 _
= . kI_ ox (— _E_') (ex L+ (ex _W___) + eeo + (ex L)(Zi_l))
b P AT RT P T P T P T
1 (1 - ( ]. )21)
- 1 (S W/KT exp W/KT ) -
. kT El ° 2 =
<y exp (=) 1 - 1/(exp W/KT)
- 1 L - exp (-2iW/kT) _
« XL ex (- EL) exp - - (ex E—J—l
h SFP AT AT P Xt P YT
_ 1 - exp (- 2iW/kT)
TE T (2.4)
K 1 exp o) -sinh (7
The rate is from eq. (1.10) and (1.12) with EA1= Egl_ WA,1= - wA,l= —2iW:
. kT E' . W
(pl T P exp(~ 2iW/kT)).(2¢ T eXP (- Efﬁ.51nh (ﬂiﬂ
Rate = - -
1 - exp (-21 iij
kT E' W
= 2« 17 P, exp (- EE)’Sinh (EEJ (2.5)

Equilibrium (Rate = 0) is only possible for W = O for these barriers and

from symmetry of: E = E has to be equal to p

! nHl’
Calling: 1/((xkT/h) exp (- E'/kT)) = . s the relaxation time of the ith

expanded term, eq. (2.5) is (as chemical reaction equation):

dp .

n+l 1 _2 ) i
—ac =@~ st () (2.6)

[=W)
O
=



Now the work W of a flow unit with area Kz X k3 moving over a barrier,
over a distance A\ is: W = (f.xz.xB.x)/z = fV/2 = g.A/(2N) where V is the
activation volume and N is the number of activated flow units per unit

area (see Appendix A).

Because f,X20K3 is the force on one element it 1s easy to see that:

f.kZ.XB = force/l-element = (total force/unit area)/elements/unit area)

= stress/N = o/N. The concentration of flow units or the number of acti-

vated volumes per unit volume is: p = activ. volumes/unit-volume = (num-

ber-of-elements * A M)/ (unit-area * distance ) = (N XZ'XB'K)/XI

2'x3
where A is the length of the flow unit (or the distance between points

of flow). Eq. (2.6) can now be written (with Vi = K/Ni):

N AA, A N A A, A o,V
d 2 3 2 3 . i i
dt ( M ) =2 €A sinh | ;k%)
1

or for a constant structure N xz.x3

o,V
d Ay _ 2\ . i )
T o) =T - stan () (2.8)
1 il
or
de o oYy 1 oV
I = g = z;'sinh ( ZRT) = 21-51nh ( 2kT)

with the apparant relaxation time t; = ti/Eo (Eo = 1 for cellulosic mate-

rials). So eq. (2.6) is for no structural change:

. 1 i i 1
" — = o= ee—— S 1 2 ° 9
3 ‘ sinh ( ) : inh (¢ici) (2.9)

The inverse is:

Q
]
-e[H

arc sinh (tié)
i

The form of the first expanded term of the series has to be taken symmet-

rical for the expanded W. So from eq. (l1.1l) or eq. (2.5) is:



E..-W E. . +W
kT 1f 1 1,b 1
Rate = x o (pl exp (- T ) T Py CXP (- -—-‘-———-———kT )) (2.10)

For a creep process, it may be expected that the rate is zero for no ex-

ternal force (equilibrium) or Wl = 0. So (2.10) becomes:

E E!

1.f lb
Prexe (=g ) = ey exe (- ) (2.11)

and eq. (2.10) can be written:

E W
T 1 1
Rate = 2« %- P, exp (— —i?ij sinh (EE)
or
W
N 1
¢ = ;1-51nh (kT) (2.12)

This is in agreement with creep processes in wood at low stresses where
the behaviour is approximate Newtonian (then sinh (wl/kT) = wl/kT).
For structural changes, as in crack propagation, the crack extension force
mst overcome the thermodynamic surface energy. Further energy is needed
to change the material near the crack surface (the new surface contains
more defects) and to fracture strong ordered areas of bonds, crossing the
surface, that cannot be broken by thermal activation at normal temperatu-
res. So calling these energies Wo, the crack is in an equilibrium state
with zero velocity when W = wo. Eq. (2.10) is then:

E - W Ei b + WO

1,f 0
Ppoexp (2N = ey ewp (- )

So eq. (2.10) can be written:

E! - W W, - W W, =W
kT 1,f 0 1 0y 5
Rate = « h P exp (- —**~Ef—“").(exp ( KT ) - exp (- KT )J =
E! - W W, - W
kT 1,f 0 . 1 0
= 2K h Pp exp (- KT ) sinh ( T ) (2.13)



or, for a steady state process (pl = constant):

W, - W

. 1 . 1 0

g = t} sinh ( T ) | (2.14)
with

1 Ble " ¥

TTT Ky e¥p (» —_*“EE“"“)

1
and
- [ t -
W, (Ef Eb)/z kT 1n (V pl/pn+1)

, the influence of W_ can be
r,l 0

neglected for short term processes, even at high stress levels.

Because of the long relaxation time t
For that case is:

sinh ((w1 - W) /kT) = %'exp (w, - W) /kT)

and
E!l_ - W W, - W - E + W
. kT 1f 0 . 1 0 kT 1,f 1
Eoeym e (- ) stah (S = kg exp () -
E W
kT 1f . 1
= KT exp (— ~EEJ.s1nh (EEQ

This is done in eq. (2.16).
If there are different kinds of flow units acting together, the total ap-

plied stress is the sum of these components. So:

where Xi is the fraction of the stressed surface of the ith group of
units.

X,
- s - e .
o = Ei v, arc sinh (tie) (2.15)
or

X . t., arc sinh (t.€)
1 1 1

£ i t.e
i



For the terms with tié ¢ 1 is: (arcsinh (tié)/tié = 1,

and for terms with tié >> 1 is: (arcsinh (tié)/tié = 0

So there remain a limited number of terms:

14

o Xty *1 .
- = Z — arcsinh (t.€) (2.16)
. . i
€ i @18

The first term of (2.16) can be expressed in a mean value:

2 xiti
¢i

X
i 1
ty ) b, =% ) o (2.17)

and eq. (2.16) gets the form of the generalized flow theory consisting of

separate symmetrical elements:

x. t X, t arcsinh (tze) .\ x3t3 arcsinh (t3s)
. . 6. ;
€ 1 2 tze 3 t35

(2.18)

So, by series expansion, the assumptions of this generalized flow theory

have now been proven:

a. The flow unit spectrum exists (as expanded terms) and may be approxi-
mated by a limited number of elements with distinct average relaxation
times. (As experimental found [2], less than 3 groups are sufficient
for a description of most materials).

b. The deformation rate of all units is the same (in accordance with the

observations that there are no structural changes due to rate differ-

ences during flow).

I

- €




The first term of eq. (2.18) represents Newtonian behaviour. The others
are non-Newtonian, or Newtonian in the low strain rate range.

The fysical meaning of the expansion of the potential energy curve is, to
regard the total process as a result of parallel acting simple processes.
For instance, a dislocation may meet different kinds of obstacles and the
waiting time at the end of the process is the mean of the waiting times at
the different obstacles. At higher stresses these waiting times may change
differently for the different obstacles and the apparent activation energy
and volume may be stress dependent. Expansion means that groups of dislo-
cations are supposed to meet only one type obstacle. Each group meets an—
other type of the same obstacles in succession, resulting in a number of
parallel acting simple reactions.

Hereby it is supposed that the interaction between the different mecha-
nisms is not strong.

In elementary reactions, the activation parameters (enthalpy, entropy)

are often constant (for temperature) so that a simple description of the
total rate process becomes possible.

An experimental proof (by relaxation tests) of this supposition is given
in [6] for metals. Those metals that where described with single barrier
mechanisms, often had a stress dependent activation energy or volume.

This was not the case for the metals that were described by two (so more
than one) parallel symmetrical barriers. The enthalpy and entropy were
also constant.

The same has be donme for cotton [7] (that has a similar structure as
wood). The two symmetrical barriers had constant, stress independent ac-

tivation parameters.



Rate theory of fracture

3.1. Basic equations and fracture by constant loading

Eq. (2.18) applies for steady state processes, when the structure and
bond density doesn't change.

Crack initiation and propagation occur when the rate of bond breaking ex-
ceeds the rate of bond re-establishment, leading to structural changes.

Eq. (2.8) can be written in the form:

d (N'\ A £\
P ( R ) = 2N Rt sinh (NkT) (3.1)
with A' = A/2.

If xl can be regarded as a constant length of the flow unit, N or A may

change in eq. (3.1) whether bond density change (N) or change in free

volume is expected to cause fracture.

Both models give the same results because from eq. (2.6), eq. (3.1) is,

for constant A' = ké (and decreasing Nl):

dN, 2N £
- Lo L ()
dt =t N, KT

or

d 1/N1 fA!

2 . o
It T~ sinh (N kT) (3.2)
1 r 1

2|H

For constant Nl = Nn+1 = N and variable, increasing A' is:

1 t
aN_ A i 2NN b (2
at t_ SIND ANTkT

1

or

AT 2N N
g inh (SX) (3.3)

So eq. (3.2) in 1/N1 is exactly the same as eq. (3.3) in A'.



The choise is thus possible to regard A' as a constant (as dome for crys-—
tals and metals, where A' is taken to be equal to the Burger's vector) or
to take N as constant (when slip of the chains is expected to cause frac-
ture). A third possibility for fracture is the change of Xl (for instance
by "dislocation” multiplication or by change in flow unit density).

Then eq. (3.1) becomes:

d/A) -
dt Tt kl sinh (NKT) (3.4)
- ,

It will be shown that both models eq. (3.2) and eq. (3.4) give the same
results. So that the simplest equation (3.4) can be used for applications.

Because fracture occurs at higher stresses eq. (3.2) can be written:

dn . Ny £A" 3.5
dt ¢ ©Xp (leT) ' (3-5)
r

or for constant stress f:

-1
® dN t
1 AE -1 f
( -1 exXp (kT Nl )) ":'E— (3.6)

fA/N kKT N r
0 1

where te is the lifetime of the specimen subjected to constant stress.
The integral in eq. (3.6) is the exponential integral: - Ei(— A'E/NKT)

reducing for larger values of the variable to:

exp (- X'f/NokT)

Ay
- & (- Wep) = NTE/N KT (3.7)
So eq. (3.6) is:
N KT N h
_ _o _fAT Yy o E' _fA'
te = b EnT oXP ( NokT) cen ' EFP (kT -NOkT) (3.8)
or
Nh 1 1 1 t ‘
EL_ I + 2 £ (3.9)

) O _ -
La(ty) = In (557) + 43 N KT In(t ) + 15 N_KT

O



In the same way eq. (3.4) can be intgrated:

/N
Lo ts £ Moo
[ dln (/A == exp () = 1o (5) (3.10)
1/h br N0 T 1,m
1,0 ’
or
h xl 0 E' !
te = mr o () exe (57 - y )
1,m o
or
h xl,O E' fa* E' A°
= e—— T e eeemesweste G T emm—
La(te) = Ln (G - Lo ()‘1 ) + 5T T AU S
(3.11)
giving the same form as eq. (3.9).
Eq. (3.11) gives a strain criterion for fracture:
I
__h 1,0
ty = oer 10 () (3.12)
1,m
or
A €
1,0 m _ KkT
Yo T E T oexp ( h to) (3.13)
1l,m 0

From tests [8] it is found that to in eq. (3.11) or eq. (3.9) has a def-

inite value for the many materials tested, being the reciprocal of the

natural oscillation frequency of atoms in solids. It is seen that tO is

not constant in eq. (3.9) being the error of integrating with a constant -

(mean value) A,. This error diminishes when T approaches zero as can be

1
seen in eq. (3.13):

A A >
1,0 > 1,m when T+ 0

From eq. (3.9) it follows that when T » O, X'f/NO + E' and
t =N h/kA'f » —ET-with Kk =1 1is E' = E-= h.v for T = 0.
o] o KE" to



iging only the value of N

It 1= seen that the bond breaking model, chan
only applies near ablsolute zero temperature and thers will be